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What we’ll learn in this lecture

I Frequentist versus Bayesian thinking

I Prior, posteriors, and conjugacy

I The LDA generative model



Frequentist reasoning

In frequentist reasoning, we produce point estimates of parameters:

I If we sample 100 balls from a bag of black and white balls,
and 40 are white, then:

I we estimate that 40% of the balls in the bag are white
I we have 95% confidence that the proportion of balls is

between 30.3% and 50.3%
I (Even the latter statement is more carefully hedged in

frequentist reasoning)

Roughly speaking, maximum likelihood estimates live in the
frequentist world. (NOTE: all of this discussion is “roughly
speaking”)



Bayesian reasoning
In Bayesian reasoning, we produce probability distributions over
parameters:

If we sample 100 balls from a bag of black and white balls, and 40
are white, then the probability distribution of the proportion p of
white balls in the bag looks like:
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Roughly speaking, smoothed estimates live in the Bayesian world.



Bayesian reasoning

I We can do more interesting things with a distribution than a
point estimate

I Therefore Bayesian reasoning is more powerful than
frequentist reasoning

I However, it requires stronger assumptions

I In particular, it requires us to assume things about the state
of the world in the absence of evidence



Bayes’ equation

The core Bayesian tool is Bayes’ equation:

P(a|b) =
P(b|a)

P(b)
· P(a) (1)

We read this as:

I P(a): our prior belief about a (a distribution)

I b: the evidence

I P(b|a)/P(b): the probability of seeing the evidence, given our
prior belief in the world

I P(a|b): our posterior belief about a, given the evidence (a
distribution)



Bayes and balls

P(a|b) =
P(b|a)

P(b)
· P(a) (2)

In the example of 40 white out of 100 balls:

I P(a): our prior belief about the proportion of balls in the bag

I b: the evidence of drawing 100 balls and find 40 white

I P(b|a)/P(b): the probability of drawing 40 white balls given
our prior belief

I P(a|b): our posterior belief in the proportion of white balls in
the bag



Prior

I Our prior belief, P(a), must be a distribution

I It can’t be a single estimate, e.g. 0.5

I because then any outcome except 0.5 is impossible



Prior

Perhaps our prior belief looks like this:
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That is, we think any proportion p of white balls is equally likely.
(Note: area under curve is 1, so this is a probability distribution)



Influence of the prior

I The prior we choose will influence our posterior

I When we have very little evidence, the influence of the prior
will be stronger

I As we see more evidence, the influence of the prior will
diminish

I . . . and we will put more weight on the evidence

I (This is the way in which a prior “smooths” our belief)



Shifting posterior
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Shifting posterior

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.5

1.0

1.5

2.0

2.5

4 white, 6 black balls in sample

p

P
(p

)



Shifting posterior
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Shifting posterior
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Shifting posterior
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Shifting posterior
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Conjugate prior

P(a|b) =
P(b|a)

P(b)
· P(a) (3)

I It is convenient if P(a) and P(a|b) belong to the same family
Θ of distributions, albeit with different parameters (say, Θ(α)
and Θ(β))

I The family Φ of P(b|a) will not generally be Θ

I However, we want to choose Θ such that, when P(a) is
updated with P(b|a), then P(a|b) is also of family Θ

I When this is the case, we say that Θ is conjugate to Φ (or,
equivalently, that P(a) is conjugate prior to P(b|a))



Binomial and beta

P(b = 1|a) = p

P(b = 0|a) = 1− p

I When b can take only one of two values (white / black, head
/ tails, true / false), then P(b|a) is binomial

I The conjugate prior to the binomial is the beta distribution

I Use in this way, the beta distribution is a “distribution over
distributions” (a meta-distribution)



Multinomial and Dirichlet

P(b = (“cat ′′)|a) = q1

P(b = (“dog ′′)|a) = q2

. . . . . .

P(b = wi |a) = qi

. . . . . .

P(b = wn|a) = 1−
n−1∑
i

qi

I When b can take one of n > 2 discrete values, the distribution
is multinomial

I The conjugate prior to the multinomial is the Dirichlet
distribution



PLSI

P(d ,w) = P(d)
∑
z∈Z

P(w |z = i)P(z = i |d) (4)

I PLSI is a maximum likelihood method

I Has no principled way of assigning probabilities (e.g. topics)
to new document

I Also has no principled way of assigning probabilities to new
words



PLSI

I The document d (i.e. document distribution over topics) is an
observed variable

I A different distribution over topics is learnt for each of the M
documents d

I This requires kM parameters to be found (k is number of
topics)

I Leads to over-fitting



LDA

LDA adds to priors:

I A prior α to the document distribution over topics
I Allows us to assign probabilities to new documents

I A prior β over the topic distribution of words
I Allows us to assign probabilities to new words



LDA

I Each Θ ∈ {Θ1, . . . ,ΘM} is a multinomial distribution over
topics (given a document)

I Therefore, the prior α to Θ is a Dirichlet distribution
I Each Φ ∈ {Φ1, . . . ,ΦK} is a multinomial distribution over a

word (given a topic)
I Therefore, the prior β to Θ is also a Dirichlet distribution



LDA

I The Dirichlet priors α and β are not directly observed

I In other words, they are “latent”

I Hence the term “Latent Dirichlet Allocation”



The LDA generative model

The LDA model by which a corpus is formed is as follows:

1. Choose term probabilities for each topic: Φi ∼ D(β)

2. Choose topic probabilities for each document: Θd ∼ D(α)

3. Choose the topic of each token: zdn ∼M(θd)

4. Choose the token: wdn ∼M(φzdn)

Where:

I D is a Dirichlet distribution

I M is a multinomial distribution



Looking back and forward

Back

I Bayesian reasoning produces a
posterior distribution over states of the
world, based upon a prior and evidence

I The Dirichlet distribution is conjugate
prior to the Multinomial

I Latent Dirichlet Allocation “smooths”
pLSI by placing Dirichlet priors on:

I The distribution of topics for a
document

I The distribution of words for a topic



Looking back and forward

Forward

I Next week: finishing the LDA model



Further reading

I Blei, Ng, and Jordan, “Latent Dirichlet Allocation”, JMLR, 2003
(the article introducing LDA; note, we are using what they refer to
as “smoothed” LDA)

I Crain, Zhou, Yang, and Zha, “Dimensionality Reduction and Topic
Modeling”, Chapter 5 of Aggarwal and Zhai (ed.), Mining Text
Data, 2012 (good summary of topic modeling using LSI, pLSI, and
LDA).

I Sun, Deng, and Han, “Probabilistic Models for Text Mining”,
Chapter 8 of Aggarwal and Zhai (ed.), Mining Text Data, 2012
(discusses probabilistic models, including the Dirichlet process, in
more detail).
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